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Unsteady dynamics of an elastic conical shell with a circular cross-section are considered when the 

smaller base is clamped and the larger base is free. Inside the shell gas flows supersonically from the 

smaller end to the larger end. The shell is also transversally loaded. All processes are assumed to 

axisymmetric. Flutter is investigated and for a stable situation the evolution of the bending of the cone 

generators under the action of a given load is analysed. The behaviour of the shell is described by the 

equations of technical theory in mixed form, the influence of the flux being taken into account via a 

piston model. A non-local approximation to the solution by a special system of orthogonal polynomials 

is used. Its properties are discussed and numerical results are given. 

A review of the literature can be found in [l-6]. The problem of flutter for a conical shell with 
circular cross-section was discussed in [7, 81. 

1. STATEMENT OF THE PROBLEM 

Suppose we have a shell whose median surface is a cone of circular cross-section (Fig. 1). 
The radius of the smaller base is r, and of the larger base r,. The distance between the bases is 
d. These parameters are uniquely related to the parameters y, s, and s, by the formulae 

r0 = so sin y. rl = s1 sin y, d = (sl - s,)cos y (1.1) 

K-‘=tgy=(q--rO)/d, so=ro~ l+tc 47, s, = &Z (1.2) 

The shell thickness h is assumed to be constant, and the material is elastic, homogeneous, 
isotropic, with Young’s modulus E and Poisson’s ratio v. The density is p. We shall describe 
the stress-strain state of the shell by the equations of the technical theory in mixed from [l] 

DV4w-V;F-L(w,F)-q=O 

V4F-EhV;w+MEhL(w,w)=O 
(1.3) 

where the operators are 

L(w, F)=(s-‘F, +s-‘F,)w, +(f2w, +s-‘ws)F, - 

-2(s-‘Fys - s-‘F,)(s-‘w,, - s-*w,) (1.4) 
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Fig. 1. 

~4 =vv, ~2 =a,+ s-la~+s-zaw, vi =s-ka, 

and the following notation is used: s is the distance along the median surface meridian from the 
vertex to a chosen point on the cone, w= cpsiny, cp is the angular coordinate of that point 
along the circumference of the cone, w is the normal displacement of the point from the 
median surface, F is the stress function, D = j&Hz3 /(l -v’) is the cylindrical rigidity, K = ctg y, 
a,, a, and a, are the differential operators with respect to the variables shown by their 
subscripts, w,, w,, F, and F, are derivatives with respect to the variables shown by their 
subscripts, and q is the transverse load whose origin is for the time being unspecified 

We change to equations in variations. We assume that a perturbed solution w + w”, F + F”, 
q+q” exists near to the fundamental solution w”, F”, q”. Substituting the former into (1.3), 
using the fact that w”, F”, q” is a solution, and neglecting terms quadratic in the perturbation, 
we obtain 

DPW-V;F-L(w”,F)-L(w.Fo)-q=O 

V4F+EhV;w+EhL(wo,w)=0 (1.5) 

When the fundamental (with index zero) stress-strain state is axially symmetric, we have 

L(w”,F)=(s-2FW+s-1Fs)w~s+ F,s-‘w,o 

L(w, F”) = s-‘@w,, + &f2wW + s-‘w,) (1.6) 

L(wO, w) = (f2WW + f’w,)w,q, + w,s-lw,o 

When the perturbation is also axially symmetric, we have 

L(w’, F) = s-‘(F,w,o),, L(w’,w) = s-‘(w,w,~)~ 

L(w’, F) = s-‘(F;ow,), 

As a result (1.5) takes the form 

DV4w-V~F-s-‘(F,w,0),-s-‘(~ow,),-q=0 

V4F - EhV;w + Ehs-‘(w,w,o), = 0 

v4 =s-la,sa,s-la,sa, 

(1.7) 
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As the principal solution we take the known [l, 21 zero-torque solution 

705 

(sq’), = sdq’, T; = s&q0 

where T,” is the longitudinal stress, Ti is the circumferential 
normal pressure (with q” >O for internal pressure). We require 

.I;O(s,) = 0 

It is impossible to impose any boundary condition on (1.9) in 
take [3] wp = 0, and so only one of the three expressions in (1.7) 
with axial symmetry 

(1.9) 

stress, and 4’ is the constant 

(1.10) 

addition to (1.10). We have to 
is non-zero. Using the fact that 

(1.11) 

we calculate 

F’(Ffw,), =)/2K-'q0((s-s~s-')w,,+2w,) (1.12) 

We shall assume that gas is flowing supersonically inside the shell from the narrow end to 
the wide end (i.e. from left to right in Fig. 1). It exerts a pressure on the wall of the channel, 
and given the assumption of axial symmetry its mean value (in terms of s lying on [so, sr]) can 
be taken to be q”. Any deviation of the wall causes a pressure perturbation which we will 
denote by ql. According to “piston theory” [2,4,5] the formula 

q’ =- PJJ 7=-=-L uw +aw 
M2-1 s $-1 ’ 

1 
(1.13) 

holds. 
In (1.13) q1 and w are functions of both the coordinate s and the time t, M is the Mach 

number: the ratio of the flow velocity U near the wall to the velocity of sound u in the gas, and 
pi is the gas density. All flow parameters are positive, and to simplify the problem they are 
assumed to be specified in advance and to be constant over s and t. 

The inertial forces when the wall moves are taken into account by the term 

q2 = - hpw,, (1.14) 

Representing 4 from (1.8) in the form q = q’ + q* we obtain the flutter equations for a shell in 
a flow. Introducing the additional term q3(s, t) (q=ql +q2 +q3) we can follow the forced 
oscillations of the system under the action of a given perturbation q3. 

Combining (1.8)-(1.14) we obtain the basic system of equations: 

DV4~-V;F-s-1(F;O~s)S +ew, +IJW, +{wn =q3 

V”F+ EhV;w = 0 

s-‘(F;ow,), = y$-‘qO((s+-l)w~ +2w,) (1.15) 

5 = p&12(M2 -1)-K 

t\ = ~,u(M’ - 2)(M2 - l)-%, 6 = ph 
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We now consider boundary and initial conditions. The boundary s = s, is assumed to be free. 
Then [l] it4] =O, Q, = O-the torque and shear stress are zero. In terms of derivatives with 
respect to w this can be written as 

s=s. , . w, + dw, = 0. wsss + s-lwss - s-2ws = 0 (1.16) 

The left-hand sides of (1.16) are denoted by M, and Q,, respectively. 
The s = s, boundary is assumed to be clamped 

s=sg: w=o, w,=o (1.17) 

It is natural to require of the function F that at s = s, the membrane stress q vanishes, from 
which, by (1.11) 

s = s,: F,=o (1.18) 

and also that at s = s,, the displacement along the s axis vanishes. 
From the relations of shell theory [l], using (1.17), one can show that q =vT, =0 (s= so). 

Using (1.11) we arrive at the condition 

s=sg: F, -vs-‘I$ =o (1.19) 

The differential form on the left-hand side of (1.19) only differs from the form earlier 
denoted by M, by the sign in front of Poisson’s ratio, and so we shall call it M, and write 
(1.19) as M, = 0 (s = so). 

The stress function F only participates in physically meaningful shell theory equations 
through its derivatives, and so without loss of generality it can be fixed at one point 

s=s,: F=O (1.20) 

Finally, the last condition can be obtained naturally by integrating by parts the functional 
generated by the leading terms in (1.15) 

s = so: QF = F,, + s”F,, - s-~F, = 0 (1.21) 

Choosing s = s, in (1.20) and s = s, in (1.21) leads to a symmetric system of conditions on 
w and F in the same sense in which the shell theory equilibrium and compatibility equations 
are symmetric in the statics-geometry analogy [6]. 

Initial conditions are not necessary for judging the possibility of flutter, and for dynamics we 
assume that at the initial instant of time the deflection is zero and the shell does not move 

t =o: w =o, w, =o (1.22) 

2. METHOD OF SOLUTION 

System (1.15) is a linear system of partial differential equations with variable coefficients. We 
will separate the variables by the Fourier method. We therefore take each of the functions w 
and F to be a product of a function of time only and a function of the coordinate only, and 
substitute this factorization into (1.15). From the second equation we find that the time- 
dependent factors in w and F are identical apart from a multiplicative constant. In the first 
equation the variables separate provided that n and 6 in (1.15) are connected by a factor 
independent of s and t. This property was one of the reasons why the flow parameters in 
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Section 1 were taken to be constant. 
For a general configuration the ordinary differential equation for the time-dependent factor, 

being a linear second-order equation with constant coefficients, has a general solution that is a 
linear combination of exponentials. Hence flutter-type solutions (of the homogeneous system 
(1.15)) will be found by separating exponentials of t. If the given shell and flow parameters are 
such that the system is stable, then it is meaningful to formulate the dynamical problem of the 
evolution of the shape of the shell under the action of the known loading $. 

The simplicity of the domain geometry, the fact that the boundary conditions are indepen- 
dent of w and F, and the properties of the leading terms of (1.15) make possible and suggest 
the use of a non-local coordinate approximation when constructing an approximate solution. 
We assume that two systems of polynomials gk(s) and fk(s) (k = 1, . . . , -) with the following 
properties have been constructed: the g, satisfying conditions (1.16) and (1.17), and the f, 
satisfying conditions (l.S)-(1.21), with 

(v4gk,gm)=810n, (V4f&fm)=L vk,m (2.1) 

where 6, is the Kronecker delta, and the scalar product 

(a,b) = Sjabsds (2.2) 
so 

Then, representing the solution and the right-hand side by series (where summation in (2.3) 
and (2.4) is performed with k from -) 

w = Cw,(t)g,(s), F = Z Fk(t)fkW, q3 = CqkW&(s) (2.3) 

and substituting these into (1.15) multiplying the first equation by sg, (m = 1, . . . , -) and the 
secondby sf, (j=l, . . . . -), integrating from s, to s, and using (2.1) we arrive at a pair of 
infinite systems of linear algebraic equations 

The dot denotes differentiation with respect to t. 
The expression for F; in terms of w, in the second equation of system (2.4) is substituted 

into the first. It is more convenient henceforth to work in terms of vectors and matrices. 
Denoting the columns of the coefficients w,, F,, qk from (2.3) by w, F, q, respectively, and 
taking the YL, from (2.5) to be the components of the matrices Y’, we rewrite the first system 
(2.4) in vector from (I being the unit matrix) 

<YOw** + TlYOw’ + Y5w = YOq 

Y5 = DI + EhdY3Y4 + (5 - K-‘q”)Y1 + x K-‘q”Y2 

(2.6) 

The matrix Y”, being the Gram matrix of a system of linearly-independent functions g+, is 
non-degenerate. Multiplying (2.6) on the left by [-‘Y’-’ and putting z= w’ and X= -c-‘Y’- Y’, 
we write it as a first-order system in block form 

(2.7) 
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We rewrite the initial conditions (1.21) in the form 

t=o: z=w=o (2.8) 

We finally truncate series (2.3) after II terms and calculate the right-hand side (I in order to 
investigate the stability of (2.7) or solve the Cauchy problem (2.7), (2.8) by the standard 
Runge-Kutta method. 

We investigate the bilinear form from the left-hand sides of (2.1). To do this we take two 
functions a(s), b(s) specified on [s,, s,], construct the integral (V”a, b) and reduce the order 
of the derivatives in the integrand by integrating by parts twice. We then transform the inte- 
grated term with the aim of extracting the products of differential forms occurring in boundary 
conditions (1.16) and (1.17). We finally obtain 

(V%,b> = (s@$ - sM,b’)lS’ + S (a%” + vs-‘(urrbr + a%“)+ s-*a’b’)sds 1 (2.9) 
w so 

Here Q, and M, stand for the same forms in a as those of Section 1 are in w, the prime 
denotes differentiation with respect to S, and we have used the usual notation for the difference 
in the values of functions at the ends of the interval. 

On the lineal of functions satisfying conditions (1.16) and (1.17), the integrated term in (2.9) 
vanishes and the integral may be treated as a bilinear symmetric functional with arguments a 
and b. The corresponding quadratic functional is positive, as may be shown by reducing the 
form in the integrand to a sum of squares, and so the left-hand side of (2.9) defines a new scalar 
product for such functions 

(a,b) = (V4a,6) (2.10) 

By a similar argument, except that instead of v we write -v throughout, we can establish 
that the left-hand side of (2.9) defines a scalar product on the lineal of functions satisfying 
conditions (1.8)-(1.21). 

We will now construct a polynomial basis. We consider a polynomial of degree k 

pi= ~ UiSi 
i=O 

(2.11) 

Differentiating (2.11), we compute 

% 5 p; + vs-‘pi = j. uii(i - 1 + v)s’-* 

Q, ~p~+s-‘p~-s-*p~ =i~ouii2(i-2)si-3 (2.12) 

We impose boundary conditions (1.16) and (1.17) on the pk and express the subordinate 
coefficients in terms of the leading coefficients. The condition p&J = 0 gives the formula 

a0 = -+, uis; 

The remaining conditions do not contain a, and 
matrices and right-hand side of the following form 

(2.13) 

reduce to a system for a,, %, % with 
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1 2SO 3s; - i ai&’ 
i=4 

VS;’ 2(1+v) 3(2+v)s, -i aii(i-1+V)s(-2 
i=4 

9 -E aii2(i-2)S(-3 

(2.14) 

The determinant of the matrix (2.14) is equal to 

6[~~(1+v)-2(1+2v)~+3(1+v)], x=s~/s~ (2.15) 

A simple investigation shows that for real v E [O. x] it only vanishes when x is complex, so 
that matrix (2.14) is non-degenerate and the system is always solvable. 

In exactly the same way, imposing conditions (1.8)-(1.21) on the pk, we obtain system (2.14) 
except that v is replaced by -v, and S, and S, change places. Its matrix is also non-degenerate. 

Here it is appropriate to note that the conditions 

Wo) = 0, QFW = 0 (2.16) 

which also make the integrated term in (2.9) vanish, would lead to a system of type (2.14) 
which would become degenerate for some ratio of v to S, / s,. 

It is clear that it is impossible to satisfy four conditions (1.16), (1.17) or (1.18)-(1.21) by a 
non-trivial polynomial of degree less than four. We therefore begin the sequence of basis 
polynomials (pk) with a polynomial of degree four. The coefficient of the highest degree term 
is taken to be 1. From it we calculate the right-hand side of (2.14). Solving the system and using 
(2.13), we obtain a,, 4, a,, G. For the polynomial of degree five we take the coefficients to be 
1 for the fifth-degree term and 0 for the fourth-degree term, and obtain the lower degree terms 
from (2.14) and (2.13). For the polynomial of degree six we take 1 for the sixth-degree term, 0 
for the fifth and fourth-degree terms, and take the lower degree terms from (2.14) and (2.13), 
etc. As a result we construct a polynomial basis (pk} for the corresponding lineal, and using the 
Gram-Schmidt orthogonalization process with scalar product (2.10) we arrive at a system of 
functions with the required properties (2.1). 

This polynomial basis differs usefully from many others in that the integral (2.9) of the 
polynomials, which is frequently used in the orthogonalization process, can be calculated 
explicitly. We represent the polynomial of degree m in the same way as (2.11) 

h,(s)= f bjS’ 
j=O 

(2.17) 

and perform the differentiation, substituting (2.11) and (2.17) into (2.10) and integrating, and 
obtain 

(P,Jb) = ,i f 
r=l j=l 

-&-(lTv)(i+j_Z)]x 

i+j-2 
x(q - si+i-2)qbj + qb, ln(s, /so) 0 (2.18) 

where the prime on the summation sign means that terms for which i = j= 1 and which 
therefore give a logarithm on being integrated are omitted, and the upper sign is taken when 
system {g,) is being constructed and the lower sign when (f,) is being constructed. In order to 
bring the notation into agreement with (2.1), the indices must be shifted: g, and f, are 
polynomials of degree four. Graphs of the first few polynomials g, (for a.particular choice of 
v and s,/s,) are shown in Fig. 2. Note the non-interweaving of the nodes and the rapid 
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Fig. 2. 

amplitude reduction as the number increases. 
The basis length n used in actual calculations is completely governed by the properties of the 

matrix of coefficients of a,b, in (2.18). This defect of the polynomial approximation technique 
has been frequently pointed out [9, 10, 11, 51 and requires careful control of the Gram-Schmidt 
process: applying re-orthogonalization [12] and monitoring the numerical values of the scalar 
products (gk, g,), (fk, f,). In the series of examples that was considered satisfactory 
orthogonalization was achieved only for n s 8, which severely restricts the class of admissible 
loads q3. It is small consolation that the logic of the shell approach also excludes highly 
variable loads. In view of this, we consider the extremely awkward case (from the formula- 
tional and methodological point of view) of an impulsive load localized along a segment of 
width s2 (Fig. 1) near the large end of the cone (q* > 0, t, B 0 are specified parameters) 

q3(s, 0 = q‘wq5w (2.19) 

s E lsz -s,,ql o<t<r, 

s<s2-s1 t 2 t() 

For t 3 t, all the q/, in (2.3) are identically equal to zero, while for 0 < t -c t, the coefficients qk 
do not depend on time, so that for such t we are concerned with the best approximation to the 
function q4(s) by the specified system g,, . . . , g, in the sense of the norm induced by (2.2). 
Minimizing the squared distance from q4 fo the linear hull of the g,. . . . , g, we arrive at a 
linear system of dimensions n x n 

YOq=R (2.20) 

where R is an n-dimensional vector with components 

Ri = lq4gisds 
so 

(2.21) 

The matrix Y” of (2.5) is non-degenerate, while the integrals (2.21) of the characteristic 
function q4 in (2.19) are taken explicitly; hence there is no particular difficulty in constructing 
and solving (2.20). The quality of the approximation of the characteristic function by the basis 
of available length can be judged for this special case by looking at the dashed curve in Fig. 2. 

We now return to system (2.7) and investigate its stability. If jr terms are retained in the 
series (2.3), the matrix (2.7) is of dimensions 2nx2n. Putting w = We”, differentiating with 
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respect to t and substituting into the homogeneous equation (2.6), we arrive at the spectral 
problem for the matrix X of dimensions n x n 

(X - XI)W = 0, 4 = a(q/< + a) (2.22) 

Finding the eigenvalues hi of (2.22). which can be either real or complex-conjugate pairs, we 
determine 2n exponential indices a from n quadratic equations 

a* + aql/c + hi = 0 (2.23) 

In the calculations the spectral problem was solved both ways-or the matrix X and for the 
matrix (2.7)-by the same method: using standard programs from the SSP package the matrix 
was reduced to Hessenberg form, after which the QR-algorithm was applied. The first way was 
faster, while the second generally gave better results, which is important when working with a 
basis of subcritical length. 

Two asymptotic checks are possible on the quality of the computations. When 5 = q = q" = 0 
the matrix X is symmetric and positive-definite, the hi should be positive, and consequently all 
the a are pure imaginary. For finite q", 5, 77 c one can bring X as close to positive-definiteness 
as is desired by making D+=, the a remaining complex and the a/ I a I tending to pure 
imaginary values. 

In situations where at least one of the numbers a lay in the right half-plane the system was 
unstable and there was no point in following its evolution in response to a specific perturba- 
tion. If, however, all the a lay in the left half-plane, the inhomogeneous problem was solved. 
To do this the fourth-order Runge-Kutta method as modified by Gear was applied in the 
standard implementation of the SSP software package. 

3. EXAMPLE 

All calculations were performed on an IBM PC 286 in double precision. For the Cauchy problem the 
display screen showed graphs of the s-dependence of 1~ at different times. Here, as an example, we 

consider a shell with the following parameters: E = 78.48 x lo9 Pa, v = 0.25, p = 1 x low9 kg m/m3, r0 = 0.1 m, 
rL = 0.5 m, d = 1.0 m and IL = 0.001 m. We take the following averaged flow parameters u = 1 x lo3 m/s, 
p,=l~lO-‘~ kgm/m3, q0 =19.62x104 Pa, and U/~(l+(tgy)‘)=3x103 m/s. When 11=6 six pairs of com- 

plex-conjugate eigenvalues are found with almost identical real parts equal to -50, and imaginary parts 

equal to f42670. 31220, 22670, 18750, 14960 and 12610, so that the system is stable. The dynamical 
calculation for a localized impulsive load with s2 =0.2 m and I, =1x10+ s gives a sensible picture for the 

evolution of the bending, consistent with the times t, = 9.037 x lo-’ s and f, = 1.565 x lo-“ s at which the left 

boundary is reached by the bulk and shear waves, respectively, in the shell material. The oscillatory 
process is stable over times of the order of tens of t,. The role of the parameter q,, as can also be seen 
from (1.5) and (2.19), reduces to a renormalization of the ordinate axis for the graphs of w(s). 

A completely different picture is observed when II = 8. At first the perturbation propagates from 
right to left, as should be the case, but from a certain time the amplitude of the leading basis function 

begins to increase rapidly, overwhelming the other terms in the linear combination (2.3). Here the 
nodes of the graph of w(s) hardly move, creating the impression that the system has lost stability with 
respect to the dominant harmonic. This is the “saw” that is well known in computational practice [ll], 
which in the case of our short basis acquires a somewhat unfamiliar form. Independently of the unsteady 
dynamical problem, the investigation of the spectrum of the system matrix in the flutter problem enables 
us to reject confidently such a numerically unstable situation. Suspicions of numerical instability arise in 
the analysis of the scalar products that are produced during the orthonormalization process: the error in 
calculating the leading polynomials increases noticeably. It can also be diagnosed by parametric analysis: 
the results of the calculation react strongly to insignificant variations in the parameters of the problem 
such as s2. 
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If one takes a sufficiently large number of time steps in a stable calculation, one can discover yet 

another troublesome property of a short basis: an example of the way an envelope of several tens of W(S) 

curves appears on the display screen is shown in Fig. 3: there are intervals where the domain enclosed by 

the envelope is noticeably squeezed. These intervals usually coincide with the nodes of the leading 

polynomial, and the domain of Fig. 3 depends on the value of rr. 
In spite of these inadequacies, the calculation of an example takes seconds, which is important for 

multiparameter problems and means that the method is useful in practice. From the numerical results it is 
very clear that after an impact located near the wide end of the cone, a perturbation wave propagates 
towards the narrow end where it gives rise to significant strains which can under certain conditions 

fracture the narrow end of the shell. 
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